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Abstract When given time constraints, it is possible that examinees leave the
harder items till later and are not able to finish answering every item in time.
In this paper, this situation is modeled by incorporating a speeded-effect term
into a three-parameter logistic item response model. Due to the complexity of the
likelihood structure, a Bayesian estimation procedure with Markov chain Monte
Carlo method is presented. The methodology is applied to physics examination data
of the Department Required Test for college entrance in Taiwan for illustration.
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1 Introduction

Over the past few decades, there has been increasing interest in modeling response
data generated from tests that are administered within an allocated time, which
may be insufficient for some examinees. A test is said to be speeded if the time
limit affects examinees’ test performance (see, for example, Lee & Ying 2015).
In order to reduce the contamination of the test speededness in modeling response
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data, several models have been proposed in the literature. Yamamoto (1995) uses
the HYBRID model to describe the behavior that an examinee may switch to a
guessing strategy midway through a test due to the time constraint. Unlike the
unspeeded items, which are characterized by a two-parameter logistic (2PL) model,
the speeded ones are, on the other hand, characterized by a latent class based item
response model. Bolt, Cohen, and Wollack (2002) use the mixture Rasch model
of Rost (1990) to deal with situations where no penalty is imposed for guessing;
consequently, speededness effects tend to emerge in the form of incorrect as opposed
to omitted responses. Goegebeur, De Boeck, Wollack, and Cohen (2008) propose a
speeded item response theory (IRT) model with gradual process change. Under this
model, responses to items early in the test are governed by a 3PL model, and beyond
some point the success probability gradually decreases and eventually reduces to the
success probability under random guessing. Chang, Tsai, and Hsu (2014) propose
the leave-the-harder-till-later speeded two-parameter logistic (LHL-2PL) model to
accommodate the speeded effect. Additional literature on test speededness includes
Bejar (1985), Yamamoto (1989), Yamamoto and Everson (1997), Boughton and
Yamamoto (2007), Cao and Stokes (2008), and Wang and Xu (2015), among others.

In this paper, we are interested in extending the LHL-2PL model by adding a
pseudo-guessing parameter. Chang, Tsai, and Hsu (2014) apply the LHL-2PL model
to the physics examination data of Department Required Test (DRT) for college
entrance in Taiwan, and find some evidence for the LHL mechanism in analyzing the
data. Examinees have to answer 26 questions in 80 min, where the first 20 questions
are multiple-choice questions that examinees should choose one correct answer out
of 5 possible choices. It is then followed by 4 multiple-response questions, where
out of the 5 possible, examinees need to select all the answer choices that apply,
and finally 2 calculation problems. The test is administered under formula-scoring
directions, where 3/4 and 1 point are deducted from the raw score for each incorrect
answer made in the multiple-choice and multiple-response questions respectively.
If an item is left blank, the examinee would get 0 point. Furthermore, the adjusted
score would only be 0 or above for these two types of questions.

Based on the discussions of Lord (1975) on formula scoring, Chang, Tsai,
and Hsu (2014) argue that examinees are less likely to guess whenever they do
not know the answer, and therefore, it provides some rationale for considering
a speeded model in which random guessing is not allowed. However, it is also
argued that examinees often know enough about the subject to eliminate some of
the incorrect choices. That being the case, guessing from among the remaining
options is likely to help them overcome the penalty of 1=.k � 1), where k is the
number of options, and is 5 for the first 20 multiple-choice questions (e.g., Angoff
1989). For each of the 4 multiple-response questions, there are 5 choices, and
each one is graded independently, so k D 2. That is, each choice in the multiple-
response question is either true or false. In the literature, many papers also allow
random guessing (or pseudo-guessing) parameters in their models, see, for example,
Cao and Stokes (2008), Goegebeur, De Boeck, Wollack, and Cohen (2008), and
Wang and Xu (2015). This motivates us to consider in this paper the leave-the-
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harder-till-later speeded three-parameter logistic IRT (LHL-3PL) model by adding a
pseudo-guessing parameter to the LHL-2PL model of Chang, Tsai, and Hsu (2014).

The rest of the paper is organized as follows. In Sect. 2, we describe the LHL-3PL
model in more details. Since our model is a direct extension of Chang, Tsai, and Hsu
(2014), our prior settings are the same as theirs except for the extra pseudo-guessing
parameters. The prior settings for the pseudo-guessing parameters will also be
mentioned in Sect. 2. A simulation study is conducted in Sect. 3 to demonstrate the
validation of the Bayesian estimation procedure. Application of the LHL-3PL model
to the data of Department Required Test for college entrance in Taiwan is illustrated
in Sect. 4. Section 5 concludes.

2 Leave-the-Harder-till-Later Speeded Three-Parameter
Logistic Item Response Model

Let Ypj be the dichotomous response of examinee p on item j, where p D 1; 2; : : : ; P,
and J D 1; 2; : : : ; J. Denote bj and aj as the location and scale parameters
respectively, for item j, and �p as the ability parameter for examinee p. In the 2PL
model (Birnbaum 1968), the probability that examinee p gets a correct response on
item j is given by

Pr.Ypj D 1jaj; bj; �p/ D 1

1 C e�aj.�p�bj/
:

The parameter aj is also known as the discrimination parameter (de Ayala 2009),
or the slope parameter (Wang 2004), and the parameter bj is called the difficulty
parameter in Embretson and Reise (2000) and Wang and Xu (2015). For more
descriptions and discussions of the 2PL model, see Embretson and Reise (2000),
Wang (2004), and de Ayala (2009).

The three-parameter logistic (3PL) model is obtained by adding an extra
parameter to the 2PL model. Under the 3PL model,

Pr.Ypj D 1jaj; bj; cj; �p/ D cj C �
1 � cj

� � 1

1 C e�aj.�p�bj/
:

The parameter cj is referred to as the item’s pseudo-guessing or pseudo-chance
parameter and equals the probability of a correct response when � approaches �1
(de Ayala 2009). It is also named the asymptotic parameter (Wang 2004) or the
lower-asymptotic parameter (Embretson & Reise 2000). The 3PL model is suitable
for multiple-choice cognitive items (Embretson & Reise 2000; Wang 2004).

Unlike the traditional IRT models described above, where unspeededness is
implicitly assumed, Chang, Tsai, and Hsu (2014) introduce two additional param-
eters to the 2PL model in an attempt to capture the effect of speededness. It is
assumed that the probability of a correct response in given by
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Pr
�
Ypj D 1

ˇ̌
aj; bj; �p; �p; �

� D e��.bj��p/�Ifbj>�pg
1 C e�aj.�p�bj/

; (1)

where �p is the p-th examinee’s threshold parameter for speededness and �, which is
always larger than zero, is the speededness rate. Indicator function If�g is defined as

Ifbj > �pg D
�

1; bj > �p;

0; bj � �p:

The rationality behind the model is as follows. When encountering an item, the
examinee would decide if he would get into solving process right away by the level
of difficulty of the item. If its difficulty exceeds one’s threshold, �p, i.e., bj > �p, the
item is considered time-consuming and would be retained till a later test period. It is
further assumed that the first-skipped item would be answered with the probability
of e��.bj��p/. In other words, the model can be partitioned into two parts: (1) whether
to solve or not, and (2) whether the answer is correct. The two stages are given by

Zpjj.bj; �p; �/ � Bernoulli
�

e��.bj��p/�Ifbj>�pg� ;

Ypjj.aj; bj; �p; Zpj/ � Bernoulli

�
1

1 C e�aj.�p�bj/
� Zpj

�
;

where Zpj denotes whether the item is being answered or not.
As discussed in Sect. 1, for the DRT data, the first 20 questions and the 21st to

the 24th questions are multiple-choice questions and multiple-response questions
respectively, and are therefore, naturally suitable for a 3PL model, where a pseudo-
guessing parameter is included. Specifically, we consider the LHL-3PL model (to be
defined below). For the last 2 calculation problems, we simply set the corresponding
pseudo-guessing parameters to be zero. Under the LHL-3PL model,

Pr
�
Ypj D 1

ˇ
ˇaj; bj; cj; �p; �p; �

� D cj C �
1 � cj

� � e��.bj��p/�Ifbj>�pg
1 C e�aj.�p�bj/

; (2)

where 0 < cj < 1. We want to compare our proposed LHL-3PL model with the
LHL-2PL of Chang, Tsai, and Hsu (2014) to explore the role of random guessing
in the DRT data, so we adopt the assumptions, including the normality of the joint
distribution of �p and �p, prior settings and the MCMC-based estimation procedure
of Chang, Tsai, and Hsu (2014). For the pseudo-guessing parameter cj, we transform
it into the real number scale �j, and assume

�j D log

�
cj

1 � cj

�
� N

�
�� ; �2

�

�
; (3)
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Table 1 RMSE of estimates
from LHL-3PL fitting under
data generated from the
LHL-3PL model
(10 replicates)

Parametern P 250 500 1,000

b 0.9521 0.9392 0.7881

a 1.4735 0.8152 0.7369

c 0.0897 0.0978 0.0978

� 0.5645 0.5387 0.5306

� 2.8719 2.8198 2.7675

and

�� � N
�
�; �2

�
; �2

� � Inv � Gamma .˛; ˇ/ ; (4)

where � D 0, �2 D 1, ˛ D ˇ D 3.
Bayesian estimation method has been widely used in IRT modeling, see, for

example, Swaminathan and Gifford (1982, 1985, 1986), Mislevy (1986), Bolt,
Cohen, and Wollack (2002), van der Linden (2007), Cao and Stokes (2008), Fox
(2010), Meyer (2010), and Chang, Tsai, and Hsu (2014).

3 Simulation Study

In this section, we conduct a simulation study to evaluate the performance of the
MCMC method in estimating the parameters. All computations were performed
using some Fortran code with IMSL subroutines.

We first describe the true data generating process. We consider J D 40, P D 250,
500, and 1;000. Let a D .a1; � � � ; aJ/, b D .b1; � � � ; bJ/, c D .c1; � � � ; cJ/,
� D .�1; � � � ; �P/, and � D .�1; � � � ; �P/. The true values of a and b are the same as
those considered in Sect. 4 of Chang, Tsai, and Hsu (2014). For the true values of
c, we set cj D .40:5 � j/=40, for j D 1; : : : ; 40. The true value of � equals 1. For
p D 1; : : : ; P, .�p; �p/ are independently and identically sampled from a bivariate
normal distribution with the marginal distribution of �p and �p being N.0; 1/ and
N.0:2; 0:5/, respectively, and the correlation being 0:8.

We produce 40,000 MCMC draws with the first 10,000 draws as burn-in. For
each parameter, the posterior mean was calculated as our Bayes estimates, based on
30,000 MCMC draws after burn-in. We repeat the exercise 10 times, and the root
mean squared error (RMSE) of the posterior means are summarized in Table 1. From
Table 1, it is clear that, in general, the RMSE decreases with the value P, except for
the parameter c. However, the RMSE’s of the parameter c are the smallest, and those
of the parameter � are the largest. From P D 250 to P D 1;000, the RMSE’s of the
parameter a become half.
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4 Application

In this section, the proposed LHL-3PL model and the MCMC procedure described
in the previous section are applied to the data of the physics examination of the
2010 Department Required Test for college entrance in Taiwan provided by College
Entrance Examination Center (CEEC). The data from 1,000 randomly sampled
examinees contains the original responses and nonresponses information, but we
treat both nonresponses and incorrect answers the same way and code them as
Ypj D 0 as suggested by Chang, Tsai, and Hsu (2014). As for the calculation part,
the response Ypj is coded as 1 whenever the original score is more than 7:5 out of 10

points, and zero otherwise.
The four models, including the 2PL, LHL-2P, 3PL, and the LHL-3PL models, are

fitted to the data using Bayesian analysis. For the 3PL and the LHL-3PL models, we
set c25 D c26 D 0 because guessing is in theory not possible. Further comparison
is made via Bayesian model selection criterion, the deviance information criterion
(DIC; Spiegelhalter, Best, Carlin, & van der Linde 2002), described below.

We use the posterior means as the point estimates for parameters of interest. Let
� D .a; b; c; �; �; �/, and O� D .Oa; Ob; Oc; O�; O�; O�/ be the posterior mean of � under the
fitted LHL-3PL model given data y D .y1; � � � ; yP/, where yp D .yp1; � � � ; ypJ/. The
DIC for the fitted LHL-3PL model is defined as

DIC D D. O�/ C 2pD; (5)

where

D. O�/ D �2 log f .yj O�/;

pD D E�jyŒ�2 log f .yj�/� � D. O�/:

In (5), the first term D. O�/ measures the goodness-of-fit, and the second term
pD, which represents the effective number of parameters used in the model, is
the difference between posterior mean deviance and deviance evaluated at the
posterior means of the parameters. The DIC for the other three fitted models are
defined similarly. A smaller DIC is preferred, which selects a model with a better
goodness-of-fit and simultaneously maintains the model complexity to be as simple
as possible. The resulting DIC values for the four fitted models are listed in the
second row of Table 2. The LHL-3PL has a smallest DIC, indicating the best fitting
performance of the LHL-3PL as compared to the other models after compensating
for model complexity.

Apart from DIC, the Bayesian model-data fit checking techniques, such as
posterior predictive model checking (PPMC), has also been used in the literature.
See, for example, Li, Bolt, and Fu (2006), Sinharay, Johnson, and Stern (2006), and
Huang and Hung (2010). The procedure runs as follows:
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Table 2 DIC for physics examination data of the Depart-
ment Required Test for college entrance in Taiwan

Model 2PL LHL-2PL 3PL LHL-3PL

DIC 24,671.99 24,717.57 24,506.24 24,416.17

Step 1. Compute the realized discrepancy measure from the observed data set y.
Step 2. Generate a draw of parameter � from the posterior distribution.
Step 3. Draw a data set Qy from the model, using the parameter � drawn in Step 2.
Step 4. Compute the value of the predictive discrepancy measure from the above

draws of parameters and data set Qy.
Step 5. Repeat Steps 2–4 1;000 times to compute the posterior predictive p-value

(PPP-value).

The PPP-value is defined to be the percent of times that the predictive discrepancy
measure is larger than its realized counterpart. An extreme PPP-value (PPP-value
larger than 0.975 or smaller than 0.025) suggests that the model fits the data poor
(Li, Bolt, & Fu 2006, p. 11). Following from Li, Bolt, and Fu (2006) and Sinharay,
Johnson, and Stern (2006), we use the sample odds ratio (e.g. Agresti 2002p. 45)
as the discrepancy measure in our study. The sample odds ratio is defined to be
OR D .n11n00/=.n10n01/, where njk denotes the number of individuals scoring j on
the first item and k on the second item, j; k D 0; 1. The sample odds ratio tests item
response association between a pair of items. Here, we have J D 26 items, resulting
in J.J � 1/=2 D 325 pairs, and therefore, 325 PPP-values. The number of extreme
PPP-values of the four fitted models are all zeros, indicating the goodness of fits of
these four models.

Let � D .	1; � � � ; 	J/, where, for j D 1; : : : ; J, 	j D PP
pD1 ypj=P. Thus, for

j D 1; : : : ; 24, 	j represents the percent of examinees who respond correctly to
question j, and for j D 25 and 26, it represents the percent of examinees whose
original score is more than 7:5.

Now, we compare the estimates of these four models. Since the estimates of
2PL and LHL-2PL are similar, and those of 3PL and LHL-3PL are similar, we
only compare those of LHL-2PL and LHL-3PL in the following. Figure 1a shows
the plots of Ocj and 	j, over j D 1; : : : ; 26. Recall that c25 D c26 D 0. From
Fig. 1a, we see that fewer examinees score more than 7:5 or above in the calculation
problems than getting a correct answer on each of the multiple-choice questions or
the multiple-response questions. Figure 1b reveals that there are some discrepancies
between the estimated discrimination parameters Oa under the LHL-3PL and the
LHL-2PL model, whereas the estimated difficulty parameters Ob are very close
(Fig. 1c). The sample correlations between the estimates under the two models are
0:177 and 0:969 for Oa and Ob respectively (Table 3).

The sample correlation matrix of Oa, Ob, Oc and � under LHL-2PL and LHL-
3PL given in Table 4 shows that � is highly correlated with Ob, and is negatively
correlated (although the correlation is moderate) with Oa under LHL-3PL while
almost uncorrelated under LHL-2PL. For Oa and Ob, there is a moderate correlation
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Fig. 1 (a) Plots of � and Oc,
for j D 1; : : : ; 26; (b) plots of
Oa under LHL-3PL and
LHL-2PL; (c) plots of Ob under
LHL-3PL and LHL-2PL
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Fig. 2 (a) Scatter plot of O� under LHL-3PL against LHL-2PL; (b) Scatter plot of O� under LHL-
3PL against LHL-2PL
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Table 3 Sample correlations
between the estimates under
LHL-3PL and LHL-2PL

O� O� Oa Ob
Correlation 0.994 0.882 0.177 0.969

Table 4 Sample correlations
of the estimates for
LHL-3PL, with their
counterparts for LHL-2PL
enclosed by parentheses

Oa Ob Oc
� �0.387(�0.067) �0.877(�0.919) 0.492

Oa 0.417(�0.204) 0.150
Ob �0.132

Figure 2a shows that the estimated O� under both models yields very similar
results. Figure 2b, however, shows that there is a larger difference between the
estimated examinee-specific threshold parameters. Indeed, the variations of O� under
LHL-3PL are much larger than those of LHL-2PL. This may be due to the inclusion
of the extra pseudo-guessing parameters in the LHL-3PL model. The sample
correlations between the estimates under LHL-3PL and LHL-2PL are 0:994 and
0:882 for O� and O� respectively (Table 3).

Figure 1a and b reveals that item 8 has a 	 that is very close to its c-parameter
estimate and it has very different a-parameter estimates in the LHL-2PL and LHL-
3PL. We therefore compute the estimated probability that item 8 is answered
correctly in these four models. We first consider the LHL-3PL model. This is done
as follows. Recall that we produce 40,000 MCMC draws with the first 10,000
draws as burn-in. For p D 1; : : : ; P, for each draw after burn-in, we compute the
probability that fYp8 D 1g using Eq. (2), then we take the average over all the last
30; 000 draws to get an estimate of the probability that fYp8 D 1g. Then, we take
the average over p D 1; : : : ; P, to get the estimate of the probability that item 8 is
answered correctly. We repeat the computation for the other 3 models. The estimated
values are 0:26642, 0:25783, 0:26285, and 0:25860 in the 2PL, 3PL, LHL-2PL, and
LHL-3PL models, respectively. Since 	8 D 0:259, we see that the estimate in the
LHL-3PL model is closest to 	8. However, the interpretations under the LHL-2LP
and LHL-3PL models are quite different. In the LHL-3PL model, item 8 has the
highest b-parameter estimate, meaning that it is the most difficult one, and most
examinees answer it correctly just by guessing. This may or may not be true, and
deserves a further study by putting some stronger priors on the c-parameter instead
of using a two-layer hierarchical prior in this study to reduce the impact of the prior
settings.

5 Concluding Remarks

In this study, we extend the LHL-2PL model to the LHL-3PL model by adding
a pseudo-guessing parameter. Then, we apply the LHL-3PL model to the physics
examination data of the Department Required Test for college entrance in Taiwan.
The test consists of three types of questions, including multiple-choice, multiple-
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response, and calculation problems. The percent of examinees who responded
correctly are the lowest for the two calculation problems. The estimated pseudo-
guessing parameters for the multiple-choice and multiple-response questions range
from 0:0077 to 0:2694, indicating some evidence of random guessing. This may
due to the fact that examinees often know enough about the subject to eliminate
some of the incorrect choices. Therefore, guessing from among the remaining
options is likely to help them beat the odds of random guessing. We found that
the estimated ability parameters almost unaffected by adding a pseudo-guessing
parameter to the model. The changes in the estimated difficulty parameters are also
slim. Changes are mainly in some of the estimated discrimination parameters and
many of the estimated examinee-specific threshold parameters for the speededness
effect. In sum, we find some evidence for the LHL mechanism as well as for random
guessing.

In the LHL-3PL model, we consider the case that all the examinees share the
same speededness rate �. It is interesting to relax the assumption in a further study.
Another interesting future work is to put some stronger priors on the c-parameter.
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