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Abstract Differential item functioning (DIF) occurs when individuals from differ-
ent groups with the same level of ability have different probabilities of answering an
item correctly. In this paper, we develop a Bayesian approach to detect DIF based
on the credible intervals within the framework of item response theory models. Our
method performed well for both uniform and non-uniform DIF conditions in the two-
parameter logistic model. The efficacy of the proposed approach is demonstrated
through simulation studies and a real data application.
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1 Introduction

The unidimensional item response theory (IRT) models are statistical models that
describe the relationship among a latent trait (intelligence, ability, attitude, etc.), the
properties of items, and how respondents answer individual items. Like other sta-
tistical models, checking the validity of these models is necessary for the applica-
bility and the success of interpretation. Differential item functioning (DIF) refers to
a strong violation of the assumptions in IRT models. More specifically, DIF occurs
when individuals from different groups with the same level of ability have different
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probabilities of answering an item correctly. Studies of DIF deal with the question of
how item scores are affected by external variables that do not belong to the construct
to be measured (Glas 1998). Therefore it is important to know which items in a test
are subject to DIF.

Many DIF detection methods have been proposed in the literature, including tech-
niques based on the Mantel-Haenszel statistic (Holland and Thayer 1988; Camilli
and Penfield 1997; Li 2015), the log-linear models (Kok et al. 1985; Dancer et al.
1994), the IRT models (Hambleton and Rogers 1989; Wang and Woods 2017), and
the log-linear IRT models (Kelderman 1989). See Glas (1998) for further discus-
sions. Glas (1998) used the Lagrange multiplier test to evaluate DIF within the frame-
work of several IRT models, including the Rasch model, the one-parameter logistic
(1PL), and the two-parameter logistic (2PL) models.

In terms of statistical inference, there are two major approaches: frequentist infer-
ence and Bayesian inference. Using the approach of frequentist inference, hypothe-
sis testing and confidence intervals play important roles, and conclusions are drawn
based on the frequency or proportion of the observed data. A confidence interval
(CI) is a type of interval estimate (of a population parameter) that is computed from
the observed data. Confidence intervals (CIs) can be used as a significance test. The
simple rule is that if the 95% CI does not include the null value, the null hypothesis
is rejected at 0.05 level (e.g., Dahiru 2008, p. 25).

Using the approach of Bayesian inference, a credible interval is an interval in
the domain of a posterior probability distribution or a predictive distribution, and
is used for interval estimation. See Sect. 7.3 of Garthwaite et al. (2002) for further
discussion. So, similar to the frequentist approach, if one uses a Bayesian approach,
the null hypothesis is rejected at 0.05 level if the 95% credible interval does not
include the null value. Riley and Carle (2012) used 95% credible intervals to assess
differences in how respondents answer items administered by computerized adaptive
testing versus paper-and-pencil. Nevertheless, their study only focused on uniform
DIF without considering non-uniform DIF, and was limited to a small number of
replications per experimental condition.

Our goal of this study is to adopt a Bayesian approach to evaluate DIF within
the framework of IRT models by using credible intervals. In this paper, we obtained
95% credible intervals to analyze both uniform and non-uniform DIF in the context
of 2PL models. The rest of the article is organized as follows. Section 2 introduces
our method to detect DIF within the framework of 2PL models. Section 3 describes
simulations to investigate the performance of the proposed method in finite samples.
Section 4 applies the proposed analysis to the data of the physics examination of the
2010 Department Required Test in Taiwan, and Sect. 5 provides some concluding
remarks.
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2 Detecting Differential Item Functioning in
Two-Parameter Logistic Item Response Model

Let ij be the dichotomous response of examinee p on item j, where p = 1,2, ..., P
andJ = 1,2,...,J. Denote b; and g; as the location and scale parameters respectively,
for item j, and 6, as the ability parameter for examinee p. In the 2PL model (Birn-
baum 1968), the probability of examinee p getting a correct response on item j is
given by

1
7y = Pr(Yy; = 116,,a;, b)) = m' M

The parameter g; is also known as the discrimination parameter (de Ayala 2009), or
the slope parameter (Wang 2004), and the parameter b; is called the difficulty param-
eter in Embretson and Reise (2000) and Wang and Xu (2015). For more descriptions
and discussions of the 2PL model, see Embretson and Reise (2000), Wang (2004),
and de Ayala (2009).

An item is said to exhibit DIF if the probability of correctly answering the item
differs across separate subgroups after controlling for the underlying ability. Specifi-
cally, consider the simplest case of two groups, namely the reference and focal group,
and use g, = 0 and g, = 1 to indicate whether the examinee p belongs to the refer-
ence group or the focal group. Furthermore, each group has its own difficulty and
discrimination parameters. Then, Eq. (1) becomes

1
e 8 =0,
7y = Pr(Yy; = 118,.0,.4;.b;, ¢;.d)) = { Rl A 2)

e &=L
where g; and ¢; are the discrimination parameters and b; and d; are the difficulty
parameters for the reference and the focal group, respectlvely Alternatlvely, we can
adopt the notations of Glas (1998) to write Eq. (2) as

1
Op+b; & = 0’
n,;=Pr(Y, =1|g,.6,.a, ],}/],5)_{1+6/Pl p_l 3)
Tt @G0 +h;+5; 2 & =1

Equation (3) implies that the responses of the reference group are properly described
by (1), but that the responses of the focal group need additional difficulty parame-
ters 5J-, additional discrimination parameters ¥j, or both. Therefore, we consider the
following two hypotheses:

Hy/_,0 ;=0 versus Hyj,1 1y #0,

H5/’0 : 6, =0 versus H(Sj’1 10, #0.
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Due to the complexity of the likelihood function, a Bayesian estimation method is
often used. Specifically, we follow closely the Bayesian approaches of Chang et al.
(2014, 2016). For model identification purpose, the marginal distribution of 6, is set
to be the standard normal.

The procedure for testing the hypotheses runs as follows. Suppose there are J
items in the test. For each item, we test y; = 0 and 6; = 0 separately, and only focus
on one item at a time. Let n; be either y; or 5] If =7 then ﬁj = 5]-, and vice versa
(if n; = 6;, then 77; = ;). Then, a size a test of #; = 0 is constructed as follows. First,
letitem j follow Eq. (3) and set 7; = 0, whereas the other items follow Eq. (1). In other
words, we only focus on testing, if for item j, the responses of the focus group need an
additional parameter #;. Then, we implement the Bayesian analysis via the Markov
chain Monte Carlo (MCMC) scheme to construct the equal-tailed 1 — a credible
interval for the parameter #;. If the interval includes 0, then we do not reject 7; = 0.
Otherwise, n = 0 is rejected.

3 Simulation Study

In this section, we describe the simulation studies to evaluate the performance of
our tests. We fixed the Type-I error of each test (@) to 0.05. All computations were
performed using Fortran code with IMSL subroutines. For each p, g, is randomly
assigned to be 0 or 1 with a probability of .50. In each experiment, we simulate a
test consisting of 10 items, i.e., J = 10. The number of examinees (P) are 200 and
400 students. For the true values of a; and bj, forj=1,...,J, we fit the data of the 26
items of the physics examination (see Sect. 4) to the 2PL model defined in Eq. (1),
and use the fitted values of the a; and the b; of the first 10 multiple-choice items
to be the true values. Regarding the values of y; and 6;, we consider two cases (see
Table 1). The first case is that there is only one item with Y #0or 6j # 0, but not
both. The second case is that there are three items of Y= 1or 6j =1, or both. The
results are summarized in Table 2.

To construct the credible intervals, we produce 11,000 MCMC draws with the
first 1,000 draws as burn-in. For each experiment and each item, we repeat the exer-
cise 1,000 times to create 1,000 credible intervals to get the empirical probability
of detecting the DIF. In Table 2, p” is used to denote the probability of rejecting the
hypothesis 7; = 0 for the value of P. Again, n denotes either y or 6. When a test
is used to test n; = 0, the probabilities of rejecting the hypothesis 1, = 0 when it is
true and when it is not true are the so-called Type-I error and the power of the test,
respectively. In Table 2, the numbers with and without parentheses correspond to
power and type-I error, respectively.

As shown in Table 2, it is clear that for DIF items the power increases with the
value of P. For non-DIF items the Type-I errors are on average close to the nominal
size, although some of them are as large as 0.131 (p;® of item 9 for the case of
one DIF item) and as small as 0.009 (pf00 of item 8 for the case of 3 DIF items).
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Table 1 Overview of the experiments

Nr. of DIF items Condition Test P

One 1 Y =0 200, 400
2 5 = 200, 400

Three 3 7 =0;6,=0 200, 400

Table 2 Empirical probabilities of rejecting 7; = 0 and those of 5, = 0

True values 7 =1 6, =1 n=Lé=1y;=1andé; =1
em |a b; pioo pzytoo pgoo pgoo pioo pzy;oo péoo pgoo
1 1.195 |-0.001|(0.152)|(0.317)|(0.772) | (0.979) | (0.244) | (0.347)|0.117 | 0.083
2 1.242 1.52410.042 |0.052 |0.056 |0.058 [0.045 |0.051 |(0.680) (0.926)
3 0.544 1.955/0.034 |0.038 |0.058 [0.053 |[(0.121)](0.222)|(0.149) | (0.249)
4 0.778 |-2.195/0.045 |0.049 |0.103 |0.080 |0.026 |0.048 |0.094 |0.077
5 0.803 1.25410.046 |0.056 |0.039 |0.062 |0.039 |0.051 |0.040 |0.053
6 0.841 |—-0.094|0.055 |0.053 |0.068 |0.062 |0.053 |0.049 |0.065 |0.067
7 1.011 0.877[0.046 |0.056 |0.063 |0.075 |0.053 |0.048 |0.058 |0.068
8 0.082 1.054/0.070 |0.012 |0.046 |0.060 |0.009 |0.014 |0.048 |0.061
9 1.444 0.084|0.042 |0.052 [0.097 [0.131 |0.060 |0.049 |0.077 |0.105
10 1.934 1.879/0.055 [0.080 |0.049 |0.057 |0.023 |0.059 |0.047 |0.043

Moreover, the Type-I error and the power of the test of y; = 0 do not differ much for
one or three DIF items. For the test of 5, = 0, the Type-I error does not change much
for one or three DIF items, whereas the power deteriorates from one to three DIF
items. It is also interesting to note that the power of detecting DIF on the difficulty
parameter is much larger than that on the discrimination parameter.

4 Application

In this section, the proposed procedure described in the previous sections are applied
to the data of the physics examination of the 2010 Department Required Test for
college entrance in Taiwan provided by the College Entrance Examination Center
(CEEC). Examinees have to answer 26 questions in 80 min. The 26 questions are fur-
ther divided into three parts. The totel score is 100, and the test is administered under
formula-scoring directions. For the first part, there are 20 multiple-choice questions,
and the examinees have to choose one correct answer out of 5 possible choices. For
each correct answer, 3 points are granted, and 3 /4 point is deducted from the raw
score for each incorrect answer. The second part consists of 4 multiple-response
questions, and each question consists of 5 choices, examinees need to select all the
answer choices that apply. The choices in each item are knowledge-related, but are
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answered and graded separately. For each correct choice, 1 point is earned, and for
each incorrect choice 1 point is deducted from the raw score. The adjusted score
would only be 0 or above for each of these two parts. The last part consists of 2
calculation problems, and deserves 20 points in total.

The data from 1,000 randomly sampled examinees contains the original responses
and nonresponses information, but we treat both nonresponses and incorrect answers
the same way and code them as ¥,; = 0 as suggested by Chang et al. (2014). As for
the calculation part, the response Y, is coded as 1 whenever the original score is
more than 7.5 out of 10 points, and zero otherwise (see also Chang et al. 2014).
Chang et al. (2016) showed that the 2PL model fits the data well. Here, we consider
male as the reference group, and female as the focal group and among the 1,000
examinees, 692 of them are male and 308 are female.

We make more MCMC draws than in Sect. 3. Specifically, we produce 40,000
MCMC draws with the first 10,000 draws as burn-in. Then we test Y= 0 and 5j =0,
forj=1,...,26. Again, we consider « = 0.05. The results show that for Item 6, the
discrimination and the difficulty parameters are both subject to DIF, whereas for Item
24, only the discrimination parameter is subject to DIF, and for items 7, 17, 18, and
21, only the difficulty parameter is subject to DIF. To further study the testing results,
we first note that for each item, and for each examinee, the score can either be O or
1. Therefore, for each item, we define the percent of correct rate of each gender to
be the percent of scoring 1. The results are summarized in Fig. 1. It is interesting to
note that the correct rates for the male are all higher than those for the female, except
for items 3 and 19. For these two items, they are almost identical.

Then, we plot the credible intervals for the y and the 6 parameters in Fig. 2. In
this figure, the dot in the middle of each interval represents the median of the pos-
terior distribution based on the MCMC draws after burn-in. For the two items the
discrimination parameter is subject to DIF: for Item 6, the discrimination parameter
is higher for females than for males; for Item 24, the opposite holds.
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Fig. 2 Plots of the credible intervals for all items for y; (left figure) and ¢; (right figure)

From Fig. 1, we know that Item 6 is a relatively easy item and Item 24 is a rela-
tively difficult item. For the 5 items that the difficulty parameter are subject to DIF,
it is always that the parameter for the female is higher than that for the male. The
results are consistent with Fig. 1.

5 Concluding Remarks

In this article, we propose to use credible intervals to detect DIF in 2PL models.
Simulation studies show that the proposed method works reasonably well for detect-
ing the need of an additional difficulty parameter or an discrimination parameter for
the responses of the focus group. Applications of the proposed method to other IRT
models will be an interesting future line of research. It will also be worthwhile to
compare the power of our test with others in the future.
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