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Abstract Differential item functioning (DIF) occurs when individuals from differ-

ent groups with the same level of ability have different probabilities of answering an

item correctly. In this paper, we develop a Bayesian approach to detect DIF based

on the credible intervals within the framework of item response theory models. Our

method performed well for both uniform and non-uniform DIF conditions in the two-

parameter logistic model. The efficacy of the proposed approach is demonstrated

through simulation studies and a real data application.
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1 Introduction

The unidimensional item response theory (IRT) models are statistical models that

describe the relationship among a latent trait (intelligence, ability, attitude, etc.), the

properties of items, and how respondents answer individual items. Like other sta-

tistical models, checking the validity of these models is necessary for the applica-

bility and the success of interpretation. Differential item functioning (DIF) refers to

a strong violation of the assumptions in IRT models. More specifically, DIF occurs

when individuals from different groups with the same level of ability have different
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probabilities of answering an item correctly. Studies of DIF deal with the question of

how item scores are affected by external variables that do not belong to the construct

to be measured (Glas 1998). Therefore it is important to know which items in a test

are subject to DIF.

Many DIF detection methods have been proposed in the literature, including tech-

niques based on the Mantel-Haenszel statistic (Holland and Thayer 1988; Camilli

and Penfield 1997; Li 2015), the log-linear models (Kok et al. 1985; Dancer et al.

1994), the IRT models (Hambleton and Rogers 1989; Wang and Woods 2017), and

the log-linear IRT models (Kelderman 1989). See Glas (1998) for further discus-

sions. Glas (1998) used the Lagrange multiplier test to evaluate DIF within the frame-

work of several IRT models, including the Rasch model, the one-parameter logistic

(1PL), and the two-parameter logistic (2PL) models.

In terms of statistical inference, there are two major approaches: frequentist infer-

ence and Bayesian inference. Using the approach of frequentist inference, hypothe-

sis testing and confidence intervals play important roles, and conclusions are drawn

based on the frequency or proportion of the observed data. A confidence interval

(CI) is a type of interval estimate (of a population parameter) that is computed from

the observed data. Confidence intervals (CIs) can be used as a significance test. The

simple rule is that if the 95% CI does not include the null value, the null hypothesis

is rejected at 0.05 level (e.g., Dahiru 2008, p. 25).

Using the approach of Bayesian inference, a credible interval is an interval in

the domain of a posterior probability distribution or a predictive distribution, and

is used for interval estimation. See Sect. 7.3 of Garthwaite et al. (2002) for further

discussion. So, similar to the frequentist approach, if one uses a Bayesian approach,

the null hypothesis is rejected at 0.05 level if the 95% credible interval does not

include the null value. Riley and Carle (2012) used 95% credible intervals to assess

differences in how respondents answer items administered by computerized adaptive

testing versus paper-and-pencil. Nevertheless, their study only focused on uniform

DIF without considering non-uniform DIF, and was limited to a small number of

replications per experimental condition.

Our goal of this study is to adopt a Bayesian approach to evaluate DIF within

the framework of IRT models by using credible intervals. In this paper, we obtained

95% credible intervals to analyze both uniform and non-uniform DIF in the context

of 2PL models. The rest of the article is organized as follows. Section 2 introduces

our method to detect DIF within the framework of 2PL models. Section 3 describes

simulations to investigate the performance of the proposed method in finite samples.

Section 4 applies the proposed analysis to the data of the physics examination of the

2010 Department Required Test in Taiwan, and Sect. 5 provides some concluding

remarks.
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2 Detecting Differential Item Functioning in
Two-Parameter Logistic Item Response Model

Let Ypj be the dichotomous response of examinee p on item j, where p = 1, 2, ...,P,

and J = 1, 2, ..., J. Denote bj and aj as the location and scale parameters respectively,

for item j, and 𝜃p as the ability parameter for examinee p. In the 2PL model (Birn-

baum 1968), the probability of examinee p getting a correct response on item j is

given by

𝜋pj = Pr(Ypj = 1|𝜃p, aj, bj) =
1

1 + e−aj𝜃p+bj
. (1)

The parameter aj is also known as the discrimination parameter (de Ayala 2009), or

the slope parameter (Wang 2004), and the parameter bj is called the difficulty param-

eter in Embretson and Reise (2000) and Wang and Xu (2015). For more descriptions

and discussions of the 2PL model, see Embretson and Reise (2000), Wang (2004),

and de Ayala (2009).

An item is said to exhibit DIF if the probability of correctly answering the item

differs across separate subgroups after controlling for the underlying ability. Specifi-

cally, consider the simplest case of two groups, namely the reference and focal group,

and use gp = 0 and gp = 1 to indicate whether the examinee p belongs to the refer-

ence group or the focal group. Furthermore, each group has its own difficulty and

discrimination parameters. Then, Eq. (1) becomes

𝜋pj = Pr(Ypj = 1|gp, 𝜃p, aj, bj, cj, dj) =

{ 1
1+e−aj𝜃p+bj

, gp = 0,
1

1+e−cj𝜃p+dj
, gp = 1,

(2)

where aj and cj are the discrimination parameters and bj and dj are the difficulty

parameters for the reference and the focal group, respectively. Alternatively, we can

adopt the notations of Glas (1998) to write Eq. (2) as

𝜋pj = Pr(Ypj = 1|gp, 𝜃p, aj, bj, 𝛾j, 𝛿j) =

{ 1
1+e−aj𝜃p+bj

, gp = 0,
1

1+e−(aj+𝛾j)𝜃p+bj+𝛿j
, gp = 1.

(3)

Equation (3) implies that the responses of the reference group are properly described

by (1), but that the responses of the focal group need additional difficulty parame-

ters 𝛿j, additional discrimination parameters 𝛾j, or both. Therefore, we consider the

following two hypotheses:

H
𝛾j,0 ∶ 𝛾j = 0 versus H

𝛾j,1 ∶ 𝛾j ≠ 0,
H

𝛿j,0 ∶ 𝛿j = 0 versus H
𝛿j,1 ∶ 𝛿j ≠ 0.
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Due to the complexity of the likelihood function, a Bayesian estimation method is

often used. Specifically, we follow closely the Bayesian approaches of Chang et al.

(2014, 2016). For model identification purpose, the marginal distribution of 𝜃p is set

to be the standard normal.

The procedure for testing the hypotheses runs as follows. Suppose there are J
items in the test. For each item, we test 𝛾j = 0 and 𝛿j = 0 separately, and only focus

on one item at a time. Let 𝜂j be either 𝛾j or 𝛿j. If 𝜂j = 𝛾j, then 𝜂̃j = 𝛿j, and vice versa

(if 𝜂j = 𝛿j, then 𝜂̃j = 𝛾j). Then, a size 𝛼 test of 𝜂j = 0 is constructed as follows. First,

let item j follow Eq. (3) and set 𝜂̃j = 0, whereas the other items follow Eq. (1). In other

words, we only focus on testing, if for item j, the responses of the focus group need an

additional parameter 𝜂j. Then, we implement the Bayesian analysis via the Markov

chain Monte Carlo (MCMC) scheme to construct the equal-tailed 1 − 𝛼 credible

interval for the parameter 𝜂j. If the interval includes 0, then we do not reject 𝜂j = 0.

Otherwise, 𝜂j = 0 is rejected.

3 Simulation Study

In this section, we describe the simulation studies to evaluate the performance of

our tests. We fixed the Type-I error of each test (𝛼) to 0.05. All computations were

performed using Fortran code with IMSL subroutines. For each p, gp is randomly

assigned to be 0 or 1 with a probability of .50. In each experiment, we simulate a

test consisting of 10 items, i.e., J = 10. The number of examinees (P) are 200 and

400 students. For the true values of aj and bj, for j = 1, ..., J, we fit the data of the 26
items of the physics examination (see Sect. 4) to the 2PL model defined in Eq. (1),

and use the fitted values of the aj and the bj of the first 10 multiple-choice items

to be the true values. Regarding the values of 𝛾j and 𝛿j, we consider two cases (see

Table 1). The first case is that there is only one item with 𝛾j ≠ 0 or 𝛿j ≠ 0, but not

both. The second case is that there are three items of 𝛾j = 1 or 𝛿j = 1, or both. The

results are summarized in Table 2.

To construct the credible intervals, we produce 11,000 MCMC draws with the

first 1,000 draws as burn-in. For each experiment and each item, we repeat the exer-

cise 1,000 times to create 1,000 credible intervals to get the empirical probability

of detecting the DIF. In Table 2, pP
𝜂

is used to denote the probability of rejecting the

hypothesis 𝜂j = 0 for the value of P. Again, 𝜂 denotes either 𝛾 or 𝛿. When a test

is used to test 𝜂j = 0, the probabilities of rejecting the hypothesis 𝜂j = 0 when it is

true and when it is not true are the so-called Type-I error and the power of the test,

respectively. In Table 2, the numbers with and without parentheses correspond to

power and type-I error, respectively.

As shown in Table 2, it is clear that for DIF items the power increases with the

value of P. For non-DIF items the Type-I errors are on average close to the nominal

size, although some of them are as large as 0.131 (p400
𝛿

of item 9 for the case of

one DIF item) and as small as 0.009 (p200
𝛾

of item 8 for the case of 3 DIF items).
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Table 1 Overview of the experiments

Nr. of DIF items Condition Test P
One 1 𝛾j = 0 200, 400

2 𝛿j = 0 200, 400
Three 3 𝛾j = 0; 𝛿j = 0 200, 400

Table 2 Empirical probabilities of rejecting 𝛾j = 0 and those of 𝛿j = 0
True values 𝛾1 = 1 𝛿1 = 1 𝛾1 = 1; 𝛿2 = 1; 𝛾3 = 1 and 𝛿3 = 1
Item aj bj p200

𝛾

p400
𝛾

p200
𝛿

p400
𝛿

p200
𝛾

p400
𝛾

p200
𝛿

p400
𝛿

1 1.195 −0.001 (0.152) (0.317) (0.772) (0.979) (0.244) (0.347) 0.117 0.083

2 1.242 1.524 0.042 0.052 0.056 0.058 0.045 0.051 (0.680) (0.926)

3 0.544 1.955 0.034 0.038 0.058 0.053 (0.121) (0.222) (0.149) (0.249)

4 0.778 −2.195 0.045 0.049 0.103 0.080 0.026 0.048 0.094 0.077

5 0.803 1.254 0.046 0.056 0.039 0.062 0.039 0.051 0.040 0.053

6 0.841 −0.094 0.055 0.053 0.068 0.062 0.053 0.049 0.065 0.067

7 1.011 0.877 0.046 0.056 0.063 0.075 0.053 0.048 0.058 0.068

8 0.082 1.054 0.070 0.012 0.046 0.060 0.009 0.014 0.048 0.061

9 1.444 0.084 0.042 0.052 0.097 0.131 0.060 0.049 0.077 0.105

10 1.934 1.879 0.055 0.080 0.049 0.057 0.023 0.059 0.047 0.043

Moreover, the Type-I error and the power of the test of 𝛾j = 0 do not differ much for

one or three DIF items. For the test of 𝛿j = 0, the Type-I error does not change much

for one or three DIF items, whereas the power deteriorates from one to three DIF

items. It is also interesting to note that the power of detecting DIF on the difficulty

parameter is much larger than that on the discrimination parameter.

4 Application

In this section, the proposed procedure described in the previous sections are applied

to the data of the physics examination of the 2010 Department Required Test for

college entrance in Taiwan provided by the College Entrance Examination Center

(CEEC). Examinees have to answer 26 questions in 80 min. The 26 questions are fur-

ther divided into three parts. The totel score is 100, and the test is administered under

formula-scoring directions. For the first part, there are 20 multiple-choice questions,

and the examinees have to choose one correct answer out of 5 possible choices. For

each correct answer, 3 points are granted, and 3∕4 point is deducted from the raw

score for each incorrect answer. The second part consists of 4 multiple-response

questions, and each question consists of 5 choices, examinees need to select all the

answer choices that apply. The choices in each item are knowledge-related, but are
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Fig. 1 Plots of the correct

rates for male (blue line) and

female (red line) for all items

in the test

answered and graded separately. For each correct choice, 1 point is earned, and for

each incorrect choice 1 point is deducted from the raw score. The adjusted score

would only be 0 or above for each of these two parts. The last part consists of 2

calculation problems, and deserves 20 points in total.

The data from 1,000 randomly sampled examinees contains the original responses

and nonresponses information, but we treat both nonresponses and incorrect answers

the same way and code them as Ypj = 0 as suggested by Chang et al. (2014). As for

the calculation part, the response Ypj is coded as 1 whenever the original score is

more than 7.5 out of 10 points, and zero otherwise (see also Chang et al. 2014).

Chang et al. (2016) showed that the 2PL model fits the data well. Here, we consider

male as the reference group, and female as the focal group and among the 1,000

examinees, 692 of them are male and 308 are female.

We make more MCMC draws than in Sect. 3. Specifically, we produce 40,000

MCMC draws with the first 10,000 draws as burn-in. Then we test 𝛾j = 0 and 𝛿j = 0,

for j = 1, ..., 26. Again, we consider 𝛼 = 0.05. The results show that for Item 6, the

discrimination and the difficulty parameters are both subject to DIF, whereas for Item

24, only the discrimination parameter is subject to DIF, and for items 7, 17, 18, and

21, only the difficulty parameter is subject to DIF. To further study the testing results,

we first note that for each item, and for each examinee, the score can either be 0 or

1. Therefore, for each item, we define the percent of correct rate of each gender to

be the percent of scoring 1. The results are summarized in Fig. 1. It is interesting to

note that the correct rates for the male are all higher than those for the female, except

for items 3 and 19. For these two items, they are almost identical.

Then, we plot the credible intervals for the 𝛾 and the 𝛿 parameters in Fig. 2. In

this figure, the dot in the middle of each interval represents the median of the pos-

terior distribution based on the MCMC draws after burn-in. For the two items the

discrimination parameter is subject to DIF: for Item 6, the discrimination parameter

is higher for females than for males; for Item 24, the opposite holds.
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Fig. 2 Plots of the credible intervals for all items for 𝛾j (left figure) and 𝛿j (right figure)

From Fig. 1, we know that Item 6 is a relatively easy item and Item 24 is a rela-

tively difficult item. For the 5 items that the difficulty parameter are subject to DIF,

it is always that the parameter for the female is higher than that for the male. The

results are consistent with Fig. 1.

5 Concluding Remarks

In this article, we propose to use credible intervals to detect DIF in 2PL models.

Simulation studies show that the proposed method works reasonably well for detect-

ing the need of an additional difficulty parameter or an discrimination parameter for

the responses of the focus group. Applications of the proposed method to other IRT

models will be an interesting future line of research. It will also be worthwhile to

compare the power of our test with others in the future.
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